Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Biol Chem ; 299(12): 105455, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949232

RESUMEN

The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana , Proteínas Proto-Oncogénicas c-akt , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Humanos , Proliferación Celular , Guanosina Trifosfato/metabolismo , Inmunoprecipitación , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
3.
Int J Biol Sci ; 19(9): 2897-2913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324951

RESUMEN

Vaccines are a powerful medical intervention for preventing epidemic diseases. Efficient inactivated or protein vaccines typically rely on an effective adjuvant to elicit an immune response and boost vaccine activity. In this study, we investigated the adjuvant activities of combinations of Toll-like receptor 9 (TLR9) and stimulator of interferon genes (STING) agonists in a SARS-CoV-2 receptor binding domain protein vaccine. Adjuvants formulated with a TLR9 agonist, CpG-2722, with various cyclic dinucleotides (CDNs) that are STING agonists increased germinal center B cell response and elicited humoral immune responses in immunized mice. An adjuvant containing CpG-2722 and 2'3'-c-di-AM(PS)2 effectively boosted the immune response to both intramuscularly and intranasally administrated vaccines. Vaccines adjuvanted with CpG-2722 or 2'3'-c-di-AM(PS)2 alone were capable of inducing an immune response, but a cooperative adjuvant effect was observed when both were combined. CpG-2722 induced antigen-dependent T helper (Th)1 and Th17 responses, while 2'3'-c-di-AM(PS)2 induced a Th2 response. The combination of CpG-2722 and 2'3'-c-di-AM(PS)2 generated a distinct antigen-dependent Th response profile characterized by higher Th1 and Th17, but lower Th2 responses. In dendritic cells, CpG-2722 and 2'3'-c-di-AM(PS)2 showed a cooperative effect on inducing expression of molecules critical for T cell activation. CpG-2722 and 2'3'-c-di-AM(PS)2 have distinct cytokine inducing profiles in different cell populations. The combination of these two agonists enhanced the expression of cytokines for Th1 and Th17 responses and suppressed the expression of cytokines for Th2 response in these cells. Thus, the antigen-dependent Th responses observed in the animals immunized with different vaccines were shaped by the antigen-independent cytokine-inducing profiles of their adjuvant. The expanded targeting cell populations, the increased germinal center B cell response, and reshaped T helper responses are the molecular bases for the cooperative adjuvant effect of the combination of TLR9 and STING agonists.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Vacunas contra la COVID-19 , Receptor Toll-Like 9/agonistas , SARS-CoV-2 , Oligodesoxirribonucleótidos/farmacología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Citocinas , Inmunidad , Centro Germinal
4.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158982

RESUMEN

Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Ratones , Antivirales , SARS-CoV-2 , Receptor Toll-Like 3 , Genes src
5.
Cell Rep ; 38(8): 110354, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196483

RESUMEN

Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress. The ROS-dependent TRAF6-mediated non-proteolytic, K48/63-linked ubiquitination of ATG9A enhances its association with Beclin 1 and the assembly of VPS34-UVRAG complex, thereby stimulating autophagy. Notably, expression of the ATG9A ubiquitination mutants impairs ROS-induced VPS34 activation and autophagy. We further find that lipopolysaccharide (LPS)-induced ROS production also stimulates TRAF6-mediated ATG9A ubiquitination. Ablation of ATG9A causes aberrant TLR4 endosomal trafficking and decreases IRF-3 phosphorylation in LPS-stimulated macrophages. Our findings provide important insights into how K48/K63-linked ubiquitination of ATG9A contributes to the regulation of oxidative stress-induced autophagy.


Asunto(s)
Factor 6 Asociado a Receptor de TNF , Ubiquitina-Proteína Ligasas , Autofagia/fisiología , Estrés Oxidativo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Cancer Immunol Immunother ; 71(3): 705-718, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34374812

RESUMEN

BACKGROUND: A major feature of the microenvironment in pancreatic ductal adenocarcinoma (PDAC) is the significant amount of extracellular matrix produced by pancreatic stellate cells (PSCs), which have been reported to enhance the invasiveness of pancreatic cancer cells and negatively impact the prognosis. METHODS: We analyzed the data from two publicly available microarray datasets deposited in the Gene Expression Omnibus and found candidate genes that were differentially expressed in PDAC cells with metastatic potential and PDAC cells cocultured with PSCs. We studied the interaction between PDAC cells and PSCs in vitro and verified our finding with the survival data of patients with PDAC from the website of The Human Protein Atlas. RESULTS: We found that PSCs stimulated PDAC cells to secrete S100A9, which attracted circulatory monocytes into cancer tissue and enhanced the expression of programmed death-ligand 1 (PD-L1) on macrophages. When analyzing the correlation of S100A9 and PD-L1 expression with the clinical outcomes of patients with PDAC, we ascertained that high expression of S100A9 and PD-L1 was associated with poor survival in patients with PDAC. CONCLUSIONS: PSCs stimulated PDAC cells to secrete S100A9, which acts as a chemoattractant to attract circulatory monocytes into cancer microenvironment and induces expression of PD-L1 on macrophages. High expression of S100A9 and PD-L1 was associated with worse overall survival in a cohort of patients with PDAC.


Asunto(s)
Calgranulina B/genética , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/metabolismo , Comunicación Celular , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Células del Estroma/metabolismo , Biomarcadores , Calgranulina B/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Comunicación Celular/genética , Comunicación Celular/inmunología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Pronóstico , Interferencia de ARN , Células del Estroma/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
7.
Pharmaceutics ; 13(7)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371756

RESUMEN

Psoriasis, a complex inflammatory autoimmune skin disorder that affects 2-3% of the global population, is thought to be genetically predetermined and induced by environmental and immunological factors. In the past decades, basic and clinical studies have significantly expanded knowledge on the molecular, cellular, and immunological mechanisms underlying the pathogenesis of psoriasis. Based on these pathogenic mechanisms, the current disease model emphasizes the role of aberrant Th1 and Th17 responses. Th1 and Th17 immune responses are regulated by a complex network of different cytokines, including TNF-α, IL-17, and IL-23; signal transduction pathways downstream to the cytokine receptors; and various activated transcription factors, including NF-κB, interferon regulatory factors (IRFs), and signal transducer and activator of transcriptions (STATs). The biologics developed to specifically target the cytokines have achieved a better efficacy and safety for the systemic management of psoriasis compared with traditional treatments. Nevertheless, the current therapeutics can only alleviate the symptoms; there is still no cure for psoriasis. Therefore, the development of more effective, safe, and affordable therapeutics for psoriasis is important. In this review, we discussed the current trend of therapeutic development for psoriasis based on the recent discoveries in the immune modulation of the inflammatory response in psoriasis.

8.
Nat Commun ; 12(1): 3878, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188032

RESUMEN

Different levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3' ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3'-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética , Receptor Toll-Like 4/metabolismo , Regiones no Traducidas 3' , Animales , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estabilidad del ARN , ARN Mensajero/genética , Ribonucleasas/metabolismo , Uridina Monofosfato/metabolismo
9.
Front Cell Dev Biol ; 9: 642625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996800

RESUMEN

Activation of the epidermal growth factor receptor (EGFR) is crucial for development, tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with numerous diseases. EGFR ubiquitination and endosomal trafficking are key events that regulate the termination of EGFR signaling, but their underlying mechanisms remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation and prolonged downstream signaling. We further demonstrate that ZNRF1 and Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore, loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1) infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as a novel regulator of EGFR signaling, which together with CBL controls ligand-induced EGFR ubiquitination and lysosomal trafficking.

10.
Vaccines (Basel) ; 8(4)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147756

RESUMEN

CpG-oligodeoxynucleotides (CpG-ODNs) mimicking the function of microbial CpG-dideoxynucleotides containing DNA (CpG-DNA) are potent immune stimuli. The immunostimulatory activity and the species-specific activities of a CpG-ODN depend on its nucleotide sequence properties, including CpG-hexamer motif types, spacing between motifs, nucleotide sequence, and length. Toll-like receptor (TLR) 9 is the cellular receptor for CpG-ODNs in mammalian species, while TLR21 is the receptor in avian species. Mammalian cells lack TLR21, and avian cells lack TLR9; however, both TLRs are expressed in fish cells. While nucleotide sequence properties required for a CpG-ODN to strongly activate mammalian TLR9 and its species-specific activities to different mammalian TLR9s are better studied, CpG-ODN activation of TLR21 is not yet well investigated. Here we characterized chicken and duck TLR21s and investigated their activation by CpG-ODNs. Chicken and duck TLR21s contain 972 and 976 amino acid residues, respectively, and differ from TLR9s as they do not have an undefined region in their ectodomain. Cell-based TLR21 activation assays were established to investigate TLR21 activation by different CpG-ODNs. Unlike grouper TLR21, which was preferentially activated by CpG-ODN with a GTCGTT hexamer motif, chicken and duck TLR21s do not distinguish among different CpG-hexamer motifs. Additionally, these two poultry TLR21s were activated by CpG-ODNs with lengths ranging from 15 to 31 nucleotides and with different spacing between CpG-hexamer motifs. These suggested that compared to mammalian TLR9 and grouper TLR21, chicken and duck TLR21s have a broad CpG-ODN sequence recognition profile. Thus, they could also recognize a wide array of DNA-associated molecular patterns from microbes. Moreover, CpG-ODNs are being investigated as antimicrobial agents and as vaccine adjuvants for different species. This study revealed that there are more optimized CpG-ODNs that can be used in poultry farming as anti-infection agents compared to CpG-ODN choices available for other species.

11.
Am J Pathol ; 188(4): 1031-1042, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29366678

RESUMEN

Highly pathogenic avian influenza A H5N1 virus causes pneumonia and acute respiratory distress syndrome in humans. Virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. Galectin-3, a ß-galactoside-binding protein widely distributed in immune and epithelial cells, regulates various immune functions and modulates microbial infections. Here, we describe galectin-3 up-regulation in mouse lung tissue after challenges with the H5N1 influenza virus. We investigated the effects of endogenous galectin-3 on H5N1 infection and found that survival of galectin-3 knockout (Gal-3KO) mice was comparable with wild-type (WT) mice after infections. Compared with infected WT mice, infected Gal-3KO mice exhibited less inflammation in the lungs and reduced IL-1ß levels in bronchoalveolar lavage fluid. In addition, the bone marrow-derived macrophages (BMMs) from Gal-3KO mice exhibited reduced oligomerization of apoptosis-associated speck-like proteins containing caspase-associated recruitment domains and secreted less IL-1ß compared with BMMs from WT mice. However, similar levels of the inflammasome component of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were observed in two genotypes of BMMs. Co-immunoprecipitation data indicated galectin-3 and NLRP3 interaction in BMMs infected with H5N1. An association was also observed between galectin-3 and NLRP3/apoptosis-associated speck-like proteins containing caspase-associated recruitment domain complex. Combined, our results suggest that endogenous galectin-3 enhances the effects of H5N1 infection by promoting host inflammatory responses and regulating IL-1ß production by macrophages via interaction with NLRP3.


Asunto(s)
Aves/virología , Galectina 3/metabolismo , Subtipo H5N1 del Virus de la Influenza A/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neumonía/metabolismo , Neumonía/virología , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Perros , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Pulmón/patología , Pulmón/virología , Macrófagos/metabolismo , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Neumonía/patología , Piroptosis , Análisis de Supervivencia , Regulación hacia Arriba
12.
Mediators Inflamm ; 2018: 3523642, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30647534

RESUMEN

Psoriasis is a chronic inflammatory skin disorder that affects ~2%-3% of the worldwide population. Inappropriate and excessive activation of endosomal Toll-like receptors 7, 8, and 9 (TLRs 7-9) at the psoriatic site has been shown to play a pathogenic role in the onset of psoriasis. Macrophage is a major inflammatory cell type that can be differentiated into phenotypes M1 and M2. M1 macrophages produce proinflammatory cytokines, and M2 macrophages produce anti-inflammatory cytokines. The balance between these two types of macrophages determines the progression of various inflammatory diseases; however, whether macrophage polarization plays a role in psoriatic inflammation activated by endosomal TLRs has not been investigated. In this study, we investigated the function and mechanism of macrophages related to the pathogenic role of TLRs 7-9 in the progression of psoriasis. Analysis of clinical data in database revealed significantly increased expression of macrophage markers and inflammatory cytokines in psoriatic tissues over those in normal tissues. In animal studies, depletion of macrophages in mice ameliorated imiquimod, a TLR 7 agonist-induced psoriatic response. Imiquimod induced expression of genes and cytokines that are signature of M1 macrophage in the psoriatic lesions. In addition, treatment with this TLR 7 agonist shifted macrophages in the psoriatic lesions to a higher M1/M2 ratio. Both of the exogenous and endogenous TLR 7-9 ligands activated M1 macrophage polarization. M1 macrophages expressed higher levels of proinflammatory cytokines and TLRs 7-9 than M2 macrophages. These results suggest that by rendering macrophages into a more inflammatory status and capable of response to their ligands in the psoriatic sites, TLR 7-9 activation drives them to participate in endosomal TLR-activated psoriatic inflammation, resulting in an amplified inflammatory response. Our results also suggest that blocking M1 macrophage polarization could be a strategy which enables inhibition of psoriatic inflammation activated by these TLRs.


Asunto(s)
Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Psoriasis/inmunología , Psoriasis/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Biología Computacional , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Imidazoles/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Células THP-1 , Receptor Toll-Like 7/metabolismo , Receptores Toll-Like/metabolismo
13.
J Immunol Res ; 2017: 7807313, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28894754

RESUMEN

Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Psoriasis/inmunología , Piel/patología , Receptores Toll-Like/inmunología , Aminoquinolinas/efectos adversos , Aminoquinolinas/uso terapéutico , Animales , Curcumina/uso terapéutico , Citocinas/inmunología , Dermatitis/tratamiento farmacológico , Dermatitis/inmunología , Endosomas/inmunología , Humanos , Imiquimod , Indazoles/efectos adversos , Indazoles/uso terapéutico , Ácidos Isonicotínicos/efectos adversos , Ácidos Isonicotínicos/uso terapéutico , Ratones , Psoriasis/tratamiento farmacológico , Resveratrol , Transducción de Señal/efectos de los fármacos , Piel/inmunología , Estilbenos/uso terapéutico , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/antagonistas & inhibidores , Receptor Toll-Like 8/inmunología , Receptor Toll-Like 9/antagonistas & inhibidores , Receptor Toll-Like 9/inmunología , Receptores Toll-Like/antagonistas & inhibidores
14.
PLoS Pathog ; 13(7): e1006485, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28671985

RESUMEN

Inflammasome is an intracellular protein complex that serves as cytosolic pattern recognition receptor (PRR) to engage with pathogens and to process cytokines of the interleukin-1 (IL-1) family into bioactive molecules. It has been established that interleukin-1ß (IL-1ß) is important to host defense against Histoplasma capsulatum infection. However, the detailed mechanism of how H. capsulatum induces inflammasome activation leading to IL-1ß production has not been studied. Here, we showed in dendritic cells (DCs) that H. capsulatum triggers caspase-1 activation and IL-1ß production through NLRP3 inflammasome. By reciprocal blocking of Dectin-1 or Dectin-2 in single receptor-deficient DCs and cells from Clec4n-/-, Clec7a-/-, and Clec7a-/-Clec4n-/- mice, we discovered that while Dectin-2 operates as a primary receptor, Dectin-1 serves as a secondary one for NLRP3 inflammasome. In addition, both receptors trigger Syk-JNK signal pathway to activate signal 1 (pro-IL-1ß synthesis) and signal 2 (activation of caspase-1). Results of pulmonary infection with H. capsulatum showed that CD103+ DCs are one of the major producers of IL-1ß and Dectin-2 and Dectin-1 double deficiency abolishes their IL-1ß response to the fungus. While K+ efflux and cathepsin B (but not ROS) function as signal 2, viable but not heat-killed H. capsulatum triggers profound lysosomal rupture leading to cathepsin B release. Interestingly, cathepsin B release is regulated by ERK/JNK downstream of Dectin-2 and Dectin-1. Our study demonstrates for the first time the unique roles of Dectin-2 and Dectin-1 in triggering Syk-JNK to activate signal 1 and 2 for H. capsulatum-induced NLRP3 inflammasome activation.


Asunto(s)
Células Dendríticas/inmunología , Histoplasma/fisiología , Histoplasmosis/inmunología , Inflamasomas/inmunología , Lectinas Tipo C/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Animales , Caspasa 1/genética , Caspasa 1/inmunología , Células Dendríticas/microbiología , Histoplasma/genética , Histoplasmosis/genética , Histoplasmosis/microbiología , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética
15.
Nat Commun ; 8: 15502, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28593998

RESUMEN

Caveolin-1 (CAV1), the major constituent of caveolae, plays a pivotal role in various cellular biological functions, including cancer and inflammation. The ubiquitin/proteasomal pathway is known to contribute to the regulation of CAV1 expression, but the ubiquitin ligase responsible for CAV1 protein stability remains unidentified. Here we reveal that E3 ubiquitin ligase ZNRF1 modulates CAV1 protein stability to regulate Toll-like receptor (TLR) 4-triggered immune responses. We demonstrate that ZNRF1 physically interacts with CAV1 in response to lipopolysaccharide and mediates ubiquitination and degradation of CAV1. The ZNRF1-CAV1 axis regulates Akt-GSK3ß activity upon TLR4 activation, resulting in enhanced production of pro-inflammatory cytokines and inhibition of anti-inflammatory cytokine IL-10. Mice with deletion of ZNRF1 in their hematopoietic cells display increased resistance to endotoxic and polymicrobial septic shock due to attenuated inflammation. Our study defines ZNRF1 as a regulator of TLR4-induced inflammatory responses and reveals another mechanism for the regulation of TLR4 signalling through CAV1.


Asunto(s)
Caveolina 1/metabolismo , Inflamación/metabolismo , Inflamación/patología , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Animales , Caveolina 1/química , Ciego/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Eliminación de Gen , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mediadores de Inflamación/metabolismo , Ligadura , Lipopolisacáridos , Lisina/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Punciones , Células RAW 264.7 , Choque Séptico/inmunología , Choque Séptico/metabolismo , Choque Séptico/patología , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia
16.
Sci Rep ; 7: 43535, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262821

RESUMEN

Notch is a pleiotropic signaling family that has been implicated in pathogenesis of allergic airway diseases; however, the distinct function of individual Notch ligands remains elusive. We investigated whether Notch ligands, Jagged1 and DLL4, exert differential effects in OVA-induced allergic asthma. We found that whilst Jagged1 inhibition mitigated Th2-dominated airway inflammation, blockage of DLL4 aggravated the Th2-mediated asthma phenotypes. Additionally, Jagged1 signaling blockage enhanced IL-17 production and neutrophilic airway infiltration. In vitro, exogenous Jagged1 induced Th2-skewed responses, whereas augmented DLL4 signaling displayed a dual role by promoting expansion of both Tregs and Th17. In vivo, DLL4 blockage impaired Treg differentiation which plausibly resulted in exaggerated asthma phenotypes. On the contrary, administration of DLL4-expressing antigen-presenting cells promoted endogenous Treg expansion and ameliorated the allergic responses. Therefore, whilst Jagged1 induces Th2-skewed inflammation, DLL4 elicits an essential self-regulatory mechanism via Treg-mediated pathway that counterbalances Jagged1-induced Th2 responses and facilitates resolution of the airway inflammation to restore homeostasis. These findings uncover a disparate function of Jagged1 and DLL4 in allergic airway diseases, hinting feasibility of Notch ligand-specific targeting in therapy of allergic airway diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Transducción de Señal , Alérgenos/inmunología , Animales , Anticuerpos/sangre , Anticuerpos/inmunología , Asma/genética , Asma/inmunología , Asma/metabolismo , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Activación de Linfocitos/inmunología , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Hipersensibilidad Respiratoria/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
17.
J Biol Chem ; 291(37): 19299-311, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27458013

RESUMEN

Innate immune responses are important for pathogen elimination and adaptive immune response activation. However, excess inflammation may contribute to immunopathology and disease progression (e.g. inflammation-associated hepatocellular carcinoma). Immune modulation resulting from pattern recognition receptor-induced responses is a potential strategy for controlling immunopathology and related diseases. This study demonstrates that the mycotoxin patulin suppresses Toll-like receptor- and RIG-I/MAVS-dependent cytokine production through GSH depletion, mitochondrial dysfunction, the activation of p62-associated mitophagy, and p62-TRAF6 interaction. Blockade of autophagy restored the immunosuppressive activity of patulin, and pharmacological activation of p62-dependent mitophagy directly reduced RIG-I-like receptor-dependent inflammatory cytokine production. These results demonstrated that p62-dependent mitophagy has an immunosuppressive role to innate immune response and might serve as a potential immunomodulatory target for inflammation-associated diseases.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Mitofagia/efectos de los fármacos , Micotoxinas/farmacología , Patulina/farmacología , Proteína Sequestosoma-1/inmunología , Animales , Células HEK293 , Humanos , Ratones , Mitofagia/inmunología , Células RAW 264.7
18.
Sci Rep ; 6: 20486, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26843476

RESUMEN

The genetic heterogeneity in cancer cells has an increased chance in the acquisition of new mutant such as drug-resistant phenotype in cancer cells. The phenotype of drug resistance in cancer cells could be evaluated by the number or function of drug transporters on cell membranes, which would lead to decreased intracellular anti-cancer drugs concentration. Caveolae are flask-shaped invaginations on cell membrane that function in membrane trafficking, endocytosis, and as a compartment where receptors and signaling proteins are concentrated. Caveolin-1 (CAV1) is the principal structural protein of caveolae and closely correlates with multidrug resistance in cancer cells. In a systematic study of the ubiquitin-modified proteome, lysine 176 of CAV1 was identified as a potential post-translational modification site for ubiquitination. In this article, we identified a mutation at lysine 176 to arginine (K176R) on CAV1 would interfere with the biogenesis of caveolae and broke the interaction of CAV1 with P-glycoprotein. Functional assays further revealed that K176R mutant of CAV1 in cancer cells increased the transport activity of P-glycoprotein and decreased the killing ability of anti-cancer drugs in non-small-cell lung cancer cell lines.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Caveolina 1/genética , Neoplasias Pulmonares/metabolismo , Mutación , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Caveolina 1/química , Caveolina 1/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/genética , Lisina/genética , Lisina/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
19.
J Dermatol Sci ; 79(3): 222-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26048407

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is the single most common allergic disease in children. STAT6 has been noted as a hub molecule in IL-4 mediated response and AD pathogenesis. However, the association between STAT6 genetic variants and childhood AD has never been thoroughly examined. OBJECTIVE: We investigate the association between STAT6 genetic variants and childhood AD risk in Taiwanese population. METHODS: We used data from the Han Chinese in Beijing genome panel of International HapMap Project and the Taiwan Children Health Study cohort to investigate the association of STAT6 genetic variants and childhood AD risks. Four tagged SNPs were selected from HapMap database and rs324011 was most significantly associated with childhood AD. Subsequently, deep sequencing around rs324011 and unconditional/conditional logistic models were applied. RESULTS: rs324011 showed statistical significance for the occurrence of childhood AD (OR: 1.23; 95% CI: 1.01-1.51) and rs167769 showed borderline statistical significance (OR: 1.21; 95% CI: 0.99-1.49). Likelihood ratio tests revealed that haplotypes (rs167769/rs324011) were associated with childhood AD (global p=0.0018). T alleles of two STAT6 intron2 SNPs, rs324011 and rs167769, increased STAT6 promoter activity significantly in luciferase reporter assay. CONCLUSION: T allele of rs324011 in STAT6 would increase the risk of AD occurrence in children. Haplotypes of rs324011/rs167769 were also significantly associated with childhood AD in Taiwanese population.


Asunto(s)
Pueblo Asiatico/genética , Dermatitis Atópica/genética , Predisposición Genética a la Enfermedad/genética , Factor de Transcripción STAT6/genética , Adolescente , Alelos , Niño , Femenino , Haplotipos , Humanos , Intrones , Masculino , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Taiwán
20.
PLoS One ; 9(9): e108808, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25269083

RESUMEN

CpG-oligodeoxynucleotides (CpG-ODN) are potent immune stimuli being developed for use as adjuvants in different species. Toll-like receptor 9 (TLR9) is the cellular receptor for CpG-ODN in mammalian cells. The CpG-ODN with 18-24 deoxynucleotides that are in current use for human and mouse cells, however, have low activity with rabbit TLR9. Using a cell-based activation assay, we developed a type of CpG-ODN containing a GACGTT or AACGTT motif in 12 phosphorothioate-modified deoxynucleotides with potent stimulatory activity for rabbit TLR9. The developed CpG-ODN have higher activities than other developed CpG-ODN in eliciting antigen-nonspecific immune responses in rabbit splenocytes. When mixed with an NJ85 peptide derived from rabbit hemorrhagic disease virus, they had potent activities to boost an antigen-specific T cell activation and antibody production in rabbits. Compared to Freund's adjuvant, the developed CpG-ODN are capable of boosting a potent and less toxic antibody response. The results of this study suggest that both the choice of CpG-motif and its length are important factors for CpG-ODN to effectively activate rabbit TLR9 mediated immune responses.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Activación de Linfocitos/efectos de los fármacos , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 9/metabolismo , Adyuvantes Inmunológicos/química , Animales , Formación de Anticuerpos/efectos de los fármacos , Secuencia de Bases , Citocinas/metabolismo , Células HEK293 , Virus de la Enfermedad Hemorrágica del Conejo/metabolismo , Humanos , Inmunoglobulina M/metabolismo , Oligodesoxirribonucleótidos/química , Péptidos/química , Péptidos/farmacología , Fosfatos/química , Conejos , Bazo/efectos de los fármacos , Bazo/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...